American University of Beirut Department of Computer Science
 CMPS 211 - Discrete Mathematics - Fall 15/16 Assignment 5

Please solve the following exercises and submit BEFORE 11:55 pm of Monday 2nd of November.

Please get a hardcopy submission whether you plan to solve it on a computer or on a paper. In Both cases, also submit to Moodle. However, if you submit a handwritten solution, I will only correct the questions that I manage to read (and easily find).

You can submit the hard copies during by Wednesday during the recitation. I will use Moodle submissions as a proof of early submissions. Don't try to modify anything in the hard copy submission, or else it will be considered cheating and you'll get a Zero.

Exercise 1

(10 points)
Can you guess the next number?
a) Show that the value of the nth element $a_{n}=3^{n}-3^{n-1}$

$$
\begin{gathered}
a_{n}=3^{n-1}(3-1)=3^{n-1} * 2 \\
a_{1}=3^{1-1} * 2=1 * 2=2 \\
a_{2}=3^{2-1} * 2=3 * 2=6 \\
a_{3}=3^{3-1} * 2=9 * 2=18
\end{gathered}
$$

b) Find an equation for $S_{n}=a_{1}+a_{2}+a_{3}+. .+a_{i}+\cdots+a_{n}$

$$
\begin{gathered}
S_{n}=a_{1}+a_{2}+a_{3}+. .+a_{i}+\cdots+a_{n} \\
S_{n}=3^{\mathrm{n}}-1
\end{gathered}
$$

c) Prove the formula you conjectured in part (b).

Basic Step:

$$
\begin{aligned}
& S_{1}=3^{1}-1=2, \text { Valid } \\
& S_{2}=3^{2}-1=8, \text { Valid }
\end{aligned}
$$

Inductive Step:

$$
\begin{gathered}
S_{n}=3^{\mathrm{n}}-1 \text {, then } S_{n+1}=3^{\mathrm{n}+1}-1 \\
S_{n+1}=a_{n+1}+S_{n}
\end{gathered}
$$

American University of Beirut Department of Computer Science
 CMPS 211 - Discrete Mathematics - Fall 15/16 Assignment 5

$$
S_{n+1}=3^{n+1}-3^{n}+3^{n}-1=3^{n+1}-1 \text { Proved }
$$

Exercise 2

(10 points)
Prove that 6 divides $3^{\mathrm{n}}-3$ whenever n is an integer >0.

Basic Step:

Consider $\mathrm{f}(\mathrm{n})=3^{\mathrm{n}}-3$,
$f(1)=0$, which is divisible by 6
$f(2)=9-3=6$, which is divisible by 6
$f(3)=27-3=24$, which is divisible by 6
Inductive step:
$f(n)=3^{n}-3$ is divisible by 6 , then $f(n+1)$ is divisible by 6
$\mathrm{f}(\mathrm{n}+1)=3^{\mathrm{n}+1}-3$

$$
=3^{*}\left(3^{n}\right)-3
$$

$$
=3^{*} 3^{n}-9+6
$$

$$
=3^{*}\left(3^{n}-3\right)+6
$$

$$
=3 * f(n)+6
$$

$$
=3 * 6 k+6 \text {, since } f(n) \text { is divisible by } 6
$$

$$
=6(3 \mathrm{k}+1) \text {, which is divisible by } 6
$$

Proved by Induction!
It can be also proved without induction by saying that $3^{n}-3$ is $3\left(3^{n-1}-1\right)$, and $3^{\mathrm{n}-1}-1$ is always divisible by 2 since 3^{x} is always odd for any positive integer x , and thus $3^{\mathrm{n}}-3$ is divisible by 3 and 2 and then it is divisible by 6

Exercise 3

What is wrong with this "proof"?

- "Theorem" For every positive integer $\mathrm{n}, \sum_{i=1}^{n} i=\frac{\left(n+\frac{1}{2}\right)^{2}}{2}$.
- Then $\sum_{i=1}^{k+1} i=\left(\sum_{i=1}^{k} i\right)+(k+1)$.

American University of Beirut Department of Computer Science
 CMPS 211 - Discrete Mathematics - Fall 15/16 Assignment 5

- By this inductive hypothesis, $\sum_{i=1}^{k+1} i=\frac{\left(k+\frac{1}{2}\right)^{2}}{2}+k+1=\frac{\left(k^{2}+k+\frac{1}{4}\right)}{2}+$ $k+1=\frac{\left(k^{2}+3 k+\frac{9}{4}\right)}{2}=\frac{\left(k+\frac{3}{2}\right)^{2}}{2}=\frac{\left[(k+1)+\frac{1}{2}\right]^{2}}{2}$, completing the inductive step.
For $\mathrm{n}=1, \sum_{i=1}^{n} i=1$, and $\frac{\left(1+\frac{1}{2}\right)^{2}}{2}=\frac{2.25}{2}$, and thus the basic step doesn't hold

Exercise 4

(10 points)
Suppose that m and n are positive integers with $\mathrm{m}>\mathrm{n}$ and f is a function from $\{1,2, \ldots, m\}$ to $\{1,2, \ldots, n\}$. Use mathematical induction on the variable n to show that f is not one-to-one. [Hint: apply induction on n] Basic Step:
For $\mathrm{n}=1$ and any value of $\mathrm{m}>\mathrm{n}$, then f maps from $\{1,2, . . \mathrm{m}\}$ to $\{1\}$, then multiple values in domain maps to $\{1\}$, and thus f is not one-to-one

Inductive step:

For any arbitrary n and m , such that $\mathrm{m}>\mathrm{n}$, f is not one-to-one For $\mathrm{n}+1$, such that $\mathrm{n}+1<\mathrm{m}$, f maps from $\{1,2, \ldots, \mathrm{~m}\}$ to $\{1,2, \ldots, \mathrm{n}, \mathrm{n}+1\}$:

- If no value in domain maps to $n+1$, then f maps $\{1,2, \ldots, m\}$ to $\{1,2, \ldots, \mathrm{n}\}$ is not one to one by inductive hypothesis.
- If some value in $\{1,2, \ldots, \mathrm{~m}\}$ maps to $\mathrm{n}+1$, call it i, then i maps to $n+1$, then we can remove "swap" i by m and remove m from the domain; so $\{1$, $2, \ldots m-1\}$ maps to $\{1,2, \ldots n\}$, and $m-1>n$ since ($n+1<m$), which is not one-to-one also by inductive hypothesis
Then f is not one-to-one

Exercise 5

In computer science, a binary tree is a tree data structure in which each node has at most two children, which are referred to as the left child and the right child (https://en.wikipedia.org/wiki/Binary_tree).

A Ternary tree is similar to a binary tree, however instead of 2 children, each node can have up to 3 children.

American University of Beirut Department of Computer Science
 CMPS 211 - Discrete Mathematics - Fall 15/16 Assignment 5

A prefect Tree is a tree such that all leaf nodes are of same depth, and all other nodes are full nodes; i.e: each node in a perfect ternary tree of depth h has 3 children, except for the nodes at depth h (leaf nodes) who have 0 children.
a) Formulate a conjecture about the number of nodes in a Perfect Ternary tree.

You may assume that the smallest perfect Ternary tree has 1 single node, and height 0
For $\mathrm{h}=0$, total number of nodes in a ternary tree is 1
For $\mathrm{h}=1$, total number of nodes in a ternary tree is 4
For $\mathrm{h}=2$, total number of nodes in a ternary tree is 13
We can say that for an arbitrary height h, total number of nodes is

$$
\operatorname{nodes}(\mathrm{h})=\sum_{i=0}^{h} 3^{\mathrm{i}}=\frac{1-3^{h+1}}{1-3}=\frac{3^{h+1}-1}{2}
$$

b) Prove it using induction.

Inductive step:
Any perfect ternary tree of height h can be replicated 3 times, and joined by a common root, to create a perfect ternary tree (since the 3 subtrees of the root are subtrees) of height $\mathrm{h}+1$
Based on inductive hypothesis, $\operatorname{nodes}(h+1)=\frac{3^{h+2}-1}{2}$
Since each subtree is of height h, then the total number of nodes in each is nodes(h), thus the total number of nodes in a tree of height $\mathrm{h}+1$ is:
$\operatorname{nodes}(\mathrm{h}+1)=3 * \operatorname{nodes}(\mathrm{~h})+1$, $(1$ is the root node $)$
$\operatorname{nodes}(\mathrm{h}+1)=3 * \frac{3^{h+1}-1}{2}+1$
$=\frac{3^{h+2}-3}{2}+1$
$=\frac{3^{h+2}-1-2}{2}+1$
$=\frac{3^{h+2}-1}{2}+1-1=\frac{3^{h+2}-1}{2}$
Then the total number of nodes in a perfect ternary tree is $\frac{3^{h+1}-1}{2}$. Proved by Induction

American University of Beirut
Department of Computer Science
CMPS 211 - Discrete Mathematics - Fall 15/16 Assignment 5

APerfect Ternary Tree of Height 3

Exercise 6

Assume that a chocolate bar consists of n squares arranged in a rectangular pattern. The entire bar can be broken along a vertical or a horizontal line separating the squares to get 2 rectangular pieces. Assuming that only one piece can be broken at a time:
a) Determine how many breaks you must successively make to break the bar into n separate squares
if $\mathrm{n}=1$, you need 0 breaks
if $\mathrm{n}=2$, you need 1 break
if $n=3$, you need 2 breaks
if $n=4$, you need 3 breaks.
So for any bar of n pieces, we need $n-1$ breaks.
$B(n)=n-1$
b) Use strong induction to prove your answer

Basic step:

American University of Beirut Department of Computer Science
 CMPS 211 - Discrete Mathematics - Fall 15/16 Assignment 5

Shown in part a.
for all $\mathrm{j} / \mathrm{0}<\mathrm{j}<=\mathrm{n}, \mathrm{B}(\mathrm{n})=\mathrm{n}-1$
Inductive step:
Given a bar of $n+1$ pieces [we expect $B(n+1)=n$], cutting it once forms 2 bars of size a and b, such that $a+b=n+1$, $a \& b>=1$, and $a \& b$ are integers; and thus $0<\mathrm{a}<=\mathrm{n}$, and $0<\mathrm{b}<=\mathrm{n}$.

Thus by inductive hypothesis, $\mathrm{B}(\mathrm{a})=\mathrm{a}-1$, and $\mathrm{B}(\mathrm{b})=\mathrm{b}-1$
Now $B(n)=B(a)+B(b)+1(+1$ is the first cut)
$B(n+1)=a-1+b-1+1=a+b-1=n$;

Exercise 7

(10 points)
Consider the proposition $2^{n}>n^{3}$
a) Find an integer N such that the proposition is true whenever n is greater than N .

For $\mathrm{n}=1,2^{1}>1^{3}$, is false
For $n=2,2^{2}>2^{3}$, is false
For $n=3,2^{3}>3^{3}$, is false
For $n=4,2^{4}>4^{3}$, is false
For $n=5,2^{5}>5^{3}$, is false
For $n=6,2^{6}>6^{3}$, is false
For $n=7,2^{7}>7^{3}$, is false
For $n=8,2^{8}>8^{3}$, is false
For $n=9,2^{9}>9^{3}$, is false
For $n=10,2^{10}>10^{3}$, is $1024>1000$, which is true
And thus for all $\mathrm{n}>=10$, the proposition is true
b) Prove that your result for all $\mathrm{n}>\mathrm{N}$ using mathematical induction.

American University of Beirut Department of Computer Science
 CMPS 211 - Discrete Mathematics - Fall 15/16 Assignment 5

Basic step:
Shown in part a.

$$
P(n)=2^{n}>n^{3} \text {, is true for all } \mathrm{n}>=10
$$

Inductive Step:

$$
\begin{gathered}
P(n+1)=2^{n+1}>(n+1)^{3} \text { ? } \\
2^{\mathrm{n}+1}=2 * 2^{n}>2 \mathrm{n}^{3}, \text { using inductive hypothesis } \\
\leftrightarrow 2^{n+1}>2 \mathrm{n}^{3} \\
\leftrightarrow 2^{n+1}>\mathrm{n}^{3}+n^{3} \\
\leftrightarrow 2^{n+1}>\mathrm{n}^{3}+6 n^{2}, \text { since } \mathrm{n}>=10 \\
\leftrightarrow 2^{n+1}>\mathrm{n}^{3}+3 n^{2}+10 n \text {, since } \mathrm{n}>=10 \\
\leftrightarrow 2^{n+1}>\mathrm{n}^{3}+3 n^{2}+3 n+7 n \\
\leftrightarrow 2^{n+1}>\mathrm{n}^{3}+3 n^{2}+3 n+1 \\
\leftrightarrow 2^{n+1}>(\mathrm{n}+1)^{3}
\end{gathered}
$$

OR

$$
\begin{gathered}
2^{\mathrm{n}+1}=2 * 2^{n}>2 \mathrm{n}^{3} \\
\text { Is } 2 \mathrm{n}^{3}>(n+1)^{3} \text { ? } \\
\text { Basic steps for } \mathrm{n}>=10 \text { works } \\
\text { Inductive step: } \\
2(\mathrm{n}+1)^{3}>(n+2)^{3} ? \\
2(\mathrm{n}+1)^{3}=2 n^{3}+6 n^{2}+6 n+2 \\
(n+2)^{3}=n^{3}+6 n^{2}+12 n+8 \\
2(\mathrm{n}+1)^{3}-(n+2)^{3}=n^{3}-6 n-6=n\left(n^{2}-6\right)-6>? 0 \\
n \geq 10 \text { then } n^{2}-6 \geq 96 \\
n\left(n^{2}-6\right)-6 \geq 0 \\
\text { Then } \\
2(\mathrm{n}+1)^{3}>(n+2)^{3} \\
\text { So } 2^{\mathrm{n}+1}>2 \mathrm{n}^{3}>(n+1)^{3} \\
\hline
\end{gathered}
$$

Assume you can only use 5-cent and 9-cent stamps.

American University of Beirut Department of Computer Science CMPS 211 - Discrete Mathematics - Fall 15/16 Assignment 5

a) Determine which amounts of postage can be formed by the given stamps We need $\mathrm{n}=5 \mathrm{a}+9 \mathrm{~b}$ such that $\mathrm{a}, \mathrm{b}>=0$, and a and b are integers
Thus we can form postage of value $5,9,10,14,15,18,19,20,23,24,25,27$, $28,29,30,32,33,34,35,36,37,38,39,40 \ldots$
b) Prove your answer to (a) using the principle of mathematical induction. Be sure to state explicitly your inductive hypothesis in the inductive step.
Basic step:
Using stamps of 5 and 9 cents only, we were able to make postages with amounts $=32,33,34,35,36,37,38,39,40 \ldots$ as shown in part a

Inductive step:

Using stamps of 5 and 9 cents, we can create postage of amount $n>=$ 32
In other words, $\mathrm{n}=5 \mathrm{a}+9 \mathrm{~b}$ for $\mathrm{n}>=32, \mathrm{a}, \mathrm{b}>=0$ and $\mathrm{a}, \mathrm{b} \& \mathrm{n}$ are integers. So by inductive hypothesis, there is a configuration of a and b such that the above conditions are true, then $n=5 a+9 b$, for some value of $n>=32$.

We need to show that we can form $n+1$, such that $n+1=5 a^{\prime}+9 b$ ', with conditions for a^{\prime} and b^{\prime} similar to those of a and b

$$
n+1=\left\{\begin{array}{l}
5(a+2)+9(b-1) \\
5(a-7)+9(b+4)
\end{array}\right.
$$

then $\left[a^{\prime}=a+2\right.$ and $\left.b^{\prime}=b-1\right]$, or $\left[a^{\prime}=a-7\right.$ and $\left.b^{\prime}=b+4\right]$
notice that $5 a^{\prime}+9 b^{\prime}$ in both cases is equals to $n+1$
Now case 1: if $\mathrm{n}=5 \mathrm{a}+9 \mathrm{~b}$ has $\mathrm{b}>=1$, then $\mathrm{b}^{\prime}=\mathrm{b}-1>=0$, then b ' is valid; hence we can form $n+1=5(a+2)+9(b-1)$; i.e: by adding 25 -cent stamps, and removing 1 9 -cent stamp.

The other case would be that $\mathrm{n}=5 \mathrm{a}+9 \mathrm{~b}$ and $\mathrm{b}=0$, then $\mathrm{n}=5 \mathrm{a}$, we know that $\mathrm{n}>=32$, then $5 \mathrm{a}>=32$, then $\mathrm{a}>=32 / 5 \rightarrow \mathrm{a}>=6.4$, but a is an integer, so $\mathrm{a}>=7$, then $a-7>=0$, then $a^{\prime}=a-7$ is also valid; hence we can form $n+1=5(a-7)+9(b+4)$; i.e: by removing 75 -cents stamps, and adding 69 -cent stamps
Then we can get $n+1$ if we have n formed of 5 -cents and 9 -cents stamps and $n>=32$ Proved by induction.
c) Prove your answer to (a) using strong induction. How does the inductive hypothesis in this proof differ from that in the inductive hypothesis for a proof using mathematical induction?
We know from basic step shown above that the there is a configuration of a and b for $\mathrm{n}=32,33,34,35$, and 36 .
So for all $\mathrm{j} / 32<=\mathrm{j}<=\mathrm{n}$, and $36<=\mathrm{n}$ the conjecture above holds.

American University of Beirut Department of Computer Science CMPS 211 - Discrete Mathematics - Fall 15/16 Assignment 5

To get $n+1$, we simply add a 5 -cents stamp to the configuration of n-4, giving a total of $n+1$ cents. We know that $n-4$ has a valid configuration by inductive hypothesis since $36<=n$, then $32<=n-4<=n(j=n-4)$
So, since $\mathrm{n}-4$ can be made of 5 -cents and 9 -cents stamps, adding a 5 -cent stamp will give a total of $n+1$ cents made of 5 and 9 cents stamps also. Proved by Strong Induction.!

Exercise 9

(10 points)
Use strong induction to show that every positive integer n can be written as a sum of distinct powers of two, that is, as a sum of a subset of the integers 2^{0} $=1,2^{1}=2,2^{2}=4$, and so on.
[Hint: For the inductive step, separately consider the case where $k+1$ is even and where it is odd. When it is even, note that $(k+1) / 2$ is an integer.]

Basic Step:
$1=2^{0}$, this is a sum of distinct powers of 2
$2=2^{1}$, this is a sum of distinct powers of 2
$3=2^{0}+2^{1}$, this is a sum of distinct powers of 2
$4=2^{2}$, this is a sum of distinct powers of 2
Inductive step:
for all $\mathrm{j} / 1<=\mathrm{j}<=\mathrm{k}$, for an arbitrary k, j can be written as a sum of distinct powers of 2
We need to show that this property holds for $\mathrm{k}+1$
If k is even, then 2^{0} isn't present in the sum since 2^{0} is the only odd number in all powers of 2 and k is even, then we can form $\mathrm{k}+1$ by adding 2^{0} to the sum of distinct powers, keeping them distinct
The other case would be that k is odd, in which it would be the case that $\mathrm{k}+1$ is even, and $(k+1) / 2$ is an integer in the range $1<=(k+1) / 2<=k$, then $(\mathrm{k}+1) / 2$ is a sum distinct powers of 2 by inductive hypothesis. Adding 1 to each power of 2 (i.e: left shifting the powers) will keep the powers of 2 distinct and will give us $2 *(k+1) / 2$, which is $k+1$
Therefore, the predicate is proved by Strong induction

